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Abstract 

Accurate forecasting of crop yields and production levels is critical for optimizing agricultural 
supply chains and enhancing food security. This study evaluates six ensemble learning 
techniques for simultaneously forecasting the yield rate and production of rice utilizing 
historical data of several features from various districts in Bangladesh. The models are 
assessed based on �ive performance metrics. Among the models, Gradient Boosting (GB) 
demonstrated superior performance, achieving the lowest mean absolute error (MAE), mean 
squared error (MSE), median absolute error (MeAE), and the highest R2 score of 0.9943. 
Category Boosting (CatBoost) and Extreme Gradient Boosting (XGBoost) models also 
performed strongly, with R² values of 0.9917 and 0.9892, respectively. These �indings offer 
signi�icant contributions to enhancing supply chain ef�iciency by enabling better resource 
allocation, demand planning, and distribution strategies. Furthermore, the outcomes have 
extensive implications for policymakers, stakeholders, and food security initiatives, 
supporting informed decision-making in the face of growing demand and environmental 
challenges.  
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1. Introduction 

1.1	Background 

In this world of technology, it becomes not a fad but a norm to apply scienti�ic approaches 

and training by machine learning on the solution of existing problems (Sarker, 2021). This 

has led �irst-world countries to develop in areas of agriculture, health and education (Arshad 

et al., 2024). For example, the over dependence on internet in the last two decades has seen 

de�inite advantages in organizations and to citizens from actual time production and 

consumption (Farooq et al., 2020). Nowadays IoT is not only enhancing the ef�iciency of the 

user perception and ability of changing working environments but also offering solutions in 

health, retailing, traf�ic, security problems, smart homes, cities, and is in the process of doing 

so in agriculture. The IoT is suitable for constant and close monitoring in agriculture, 

including services such as farming, cattle, and greenhouses (Maraveas et al., 2022; Tuser et 

al., 2023). These IoT-based setups employ wireless sensor networks (WSNs) to gather data 

using the sensing devices and cloud solutions for analyzing and processing physical data 

collected from distant locations so that more effective decisions can be made by the research 

scholars and agriculturists (Farooq et al., 2020). On the other hand, the countries in the 

developmental stage such as Bangladesh fail to integrate these concepts due to their 

unwillingness to spend a lot of income in new technologies, and their commonly used excuse 

being high costs (Sultana & Tamanna, 2021; Ahmed et al.,2023). Poor investment in AI 

technology and IoT solutions can be said to have contributed to the slowing down of this 

nation’s progress in �ields like agriculture, healthcare among others (Mhlanga, 2021). 

Therefore, Bangladesh is depriving itself of the wonderful changes that are brought by 

technologies such as increase in productivity, better health facilities, and improvement in the 

lives of people. 

Agriculture plays a pivotal role in Bangladesh, both as a key component of the country's 

economy and as the primary source of livelihood for the majority of its population (Alam et 

al., 2009; Hamid et al., 2023). Bangladesh's agricultural sector is characterized by its diverse 

crop production (Ruane et al., 2013). The country's favorable climatic conditions and fertile 

lands support a variety of agricultural activities, making it a crucial player in ensuring food 
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security and sustaining economic growth (Khan, 2021). The agricultural sector employs 

about 45% of the workforce and contributes nearly 17% to the Gross Domestic Product 

(GDP) of Bangladesh (Rahman, 2017). Rice dominates the agricultural landscape, accounting 

for approximately 75% of the country's total crop production (Gumma et al., 2014; Dey et al., 

2023). It is not only the staple food for the Bangladeshi population but also a major export 

commodity, contributing signi�icantly to the national economy (Bandumula, 2017). Despite 

its importance, the agricultural sector in Bangladesh faces numerous challenges. These 

include vulnerability to climate change, frequent natural disasters such as �loods and 

cyclones, and the limited use of modern farming techniques and technologies (Hossain et al., 

2011). Additionally, inef�iciencies in the supply chain, from production to distribution, often 

result in signi�icant post-harvest losses and lower pro�itability for farmers (Ali et al., 2021). 

Addressing these challenges through technological advancements and optimized supply 

chain management is crucial for enhancing agricultural productivity and ensuring 

sustainable economic development in Bangladesh. Agricultural technological advancement 

is thus a key to success in agricultural growth whereby agriculture technology is aligned with 

ecological and economic endowments and �ine-tuned to the resources obtainable (Abegunde 

et al., 2019). The purpose of this study is to get a learning agent that could help in the 

decision-making process for introducing technology and thus enhance the pro�itability of the 

agricultural sector (Saiz-Rubio & Rovira-Más, 2020). 

 

1.2	Challenges	in	Optimizing	the	Rice	Supply	Chain	

Supply chain management of rice in Bangladesh has been engaging different phases like 

farming, harvesting, milling and marketing (Gazi, 2020). This chain is vital for ensuring food 

security and economic stability (Alabi & Ngwenyama, 2022). However, inef�iciencies and 

bottlenecks at different stages can signi�icantly impact overall productivity and pro�itability. 

Optimizing the rice supply chain faces several challenges, particularly concerning the Yield 

Rate (M. Ton) and Production (M. Ton). Variability in weather conditions signi�icantly affects 

these key metrics, complicating forecasting and planning (Ukhurebor et al., 2022). 

Inadequate access to modern farming techniques and technologies exacerbates this issue, as 
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farmers often lack the resources or knowledge to stabilize and improve yields (Khatri et al., 

2023). Additionally, data availability and quality are critical obstacles, with accurate 

forecasting hindered by scarce or inconsistent data. Inef�icient logistics and distribution 

networks further complicate the process, as poor infrastructure and transportation issues 

lead to delays and losses (Kumar et al., 2022). Financial constraints add another layer of 

complexity, preventing many farmers from investing in technologies and practices that could 

enhance productivity and pro�itability (Akpan & Zikos, 2023). 

 

1.3	Signi�icance	of	the	Study	

Machine learning is a part of Arti�ical Intelligence (AI) which can be de�ined as the training 

of an algorithm on data and these algorithms are used to make predictions or decisions 

(Dhall et al., 2019). It is crucial since it is capable of changing several �ields by obtaining and 

forecasting data that was inaccessible in the past (Wang et al., 2022). Ensemble learning is 

particularly a kind of machine learning approach acquired by combining different models to 

improve both the accuracy and, thus the stability of the forecast made, then when it is made 

by a single model  (Zounemat-Kermani et al., 2021). 

To overcome the challenges, this research proposes the usage of machine learning, including 

ensemble learning, to enhance the rice supply chain (Sharma et al., 2020). The potential 

effects comprise re�ining of the agricultural planning and policies through accurate 

prediction, which shall enhance ef�icient utilization of the resources towards the 

enhancement of agricultural strategies (Weiss et al., 2020). Farmers, distributors, and 

consumers stand to bene�it signi�icantly, as informed decision-making can help maximize 

pro�it margins and create a more reliable and ef�icient supply chain (Mu et al., 2021). 

Furthermore, this research contributes to the broader �ield of supply chain optimization by 

demonstrating the effectiveness of ensemble learning techniques in improving predictive 

accuracy and operational ef�iciency (Pasupuleti et al., 2024). 

This study plans to address the following research questions (RQs): 
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RQ1: How can ensemble learning techniques effectively forecast rice yield and production in 

Bangladesh? 

RQ2: Which ensemble learning model demonstrates the highest effectiveness for predicting 

rice yield and production? 

RQ3: How can the �indings aid in decision-making processes with respect to agricultural 

planning and supply chain management in Bangladesh? 

 

The study endeavors to accomplish the following research objectives (ROs) by addressing 

the RQs: 

RO1: To deploy ensemble learning algorithms for developing accurate forecasts of rice yield 

and production. 

RO2: To assess and contrast the performance of various ensemble learning models to 

identify the most effective one for predicting rice yield and production. 

RO3: To provide actionable insights to policymakers, farmers, and supply chain stakeholders, 

and assist decision-making processes in regard to effective agricultural planning and supply 

chain management strategies in Bangladesh. 

 

2. Literature Review 

Bangladesh is relatively new to this �ield of study within agriculture and technology, and the 

data sets are not very organized which is why it is hard to determine the exact outcome. 

Optimization of forecasting has become a prominent �ield of interest within data analysis and 

predictive modeling. The primary objective is to enhance the precision and dependability of 

future predictions by re�ining the models used. This approach involves adjusting the 

parameters of a forecasting model to minimize the variance between forecasted and 

observed values, ultimately improving the model's predictive capability (Abolghasemi. 

2023). This optimization process is crucial for making more informed decisions in a variety 

of sectors, such as �inance, logistics, and environmental planning (Abolghasemi. 2023). 

Optimization techniques have proven to be highly valuable in numerous �ields, particularly 

in forecasting. For example, optimization has boosted supply chain management ef�iciency 
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in logistics, resulting in lower costs and higher service levels (Juan et al.,2021). For 

perishable goods, optimizing is vital to maintain product quality, protect consumers, and 

manage supply chain expenses ef�iciently (Azadi, 2018). The application of optimization in 

forecasting has been demonstrated in numerous studies across different domains. For 

example, in the �inancial sector, optimization techniques have been used to improve the 

accuracy of stock price predictions, thereby enabling investors to make more informed 

decisions (Dey & Chatterjee, 2023) . In the logistics industry, optimization has been applied 

to enhance the ef�iciency of supply chain management, leading to reduced costs and 

improved service levels. In the environmental sector, optimization has been crucial for 

predicting weather patterns and climate change impacts, aiding in the development of more 

effective mitigation strategies (Dey & Chatterjee, 2023). 

Intelligent methods of forecasting, such as machine learning (ML) and deep learning (DL), 

leverage advanced algorithms to analyze large volumes of data and uncover complex 

patterns (Begum, 2023). In ML-based forecasting, algorithms learn from historical data to 

identify relationships and make predictions. Common ML techniques for forecasting include 

decision trees, random forests, support vector machines, and gradient boosting. These 

methods excel at handling non-linear relationships and can adapt to changing patterns in 

data . Deep learning, a subset of ML, employs neural networks with multiple layers to learn 

intricate patterns from data (Begum, 2023). Machine learning (ML) and deep learning (DL) 

have been increasingly applied in the �ield of forecasting, demonstrating their potential to 

enhance the accuracy and ef�iciency of predictions across various domains. These 

technologies have been utilized in a wide range of applications, from weather forecasting to 

�inancial market predictions, and from energy demand forecasting to disease outbreak 

modeling (Mendonça et al., 2024). In weather forecasting, ML and DL models have been 

employed to predict weather patterns with remarkable precision, improving the accuracy of 

weather forecasts and enabling more effective planning and response to extreme weather 

events. In the �inancial sector, ML and DL have been instrumental in predicting market trends 

and movements, improving the accuracy of market predictions and revolutionizing the way 

�inancial markets are analyzed and managed. In energy demand forecasting, ML and DL have 



Supply Chain Insider 
Volume 14, Issue 01, 201. 10-10-23 ISSN: 2617-7420 (Print), 2617-7420 (Online) 

supplychaininsider.org   P a g e  7 

 

been used to predict future energy consumption patterns, enabling utility companies to 

optimize their energy production and distribution networks. In public health, ML and DL 

have been utilized to model disease outbreaks and predict their potential impact, informing 

public health policies and enabling more effective responses to disease outbreaks (Mendonça 

et al., 2024). The applications of ML and DL in forecasting demonstrate their potential to 

revolutionize various sectors by providing accurate and timely predictions, enhancing the 

accuracy of predictions, and opening new possibilities for innovation and improvement in 

various �ields (Shomoye, 2024). 

2.1	Study	Context	

In Bangladesh, the integration of machine learning and ensemble learning techniques in 

agriculture is becoming increasingly important for enhancing predictive accuracy and 

decision-making processes (Nti et al., 2023). As rice is a staple food and a signi�icant part of 

the national economy, optimizing its supply chain is crucial for food security and economic 

stability (Bala et al., 2016; Shikder et al., 2022). However, the rice supply chain in Bangladesh 

faces several challenges, including weather variability, limited access to modern farming 

technologies, and inef�icient logistics (Jamal et al., 2023). Traditional methods of predicting 

rice yield and production in Bangladesh often fall short due to their inability to account for 

the complex factors affecting agricultural output. Ensemble learning techniques, which 

combine multiple machine learning models, offer a promising solution by improving 

predictive performance (Ganaie et al., 2022). To obtain better forecasts of rice yield and 

production with higher accuracy, this study utilizes certain algorithms like Random Forest, 

AdaBoost, Gradient Boosting, LightGBM, CatBoost, and XGBoost. The research focuses on 

using historical data, including details on crop yield per hectare, production, temperature 

averages, production area, year range, and region, to predict the yield rate (M.Ton) and 

production (M.Ton) of rice across Bangladesh. By leveraging these data, the study aims to 

provide actionable insights that can enhance agricultural planning and policymaking, leading 

to better resource allocation and more effective agricultural strategies. Farmers in 

Bangladesh stand to bene�it signi�icantly from this research by gaining the ability to make 

informed decisions that maximize their pro�it margins and improve productivity (Mainuddin 
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et al., 2021). Additionally, a more reliable and ef�icient supply chain will bene�it distributors 

and consumers by stabilizing prices and ensuring a consistent supply of rice. 

2.2	Related	Works	

Machine learning has increasingly become a significant tool in agriculture, particularly for 

forecasting crop output. Dahikar and Rode (2014) elaborated on the application of Artificial 

Neural Networks (ANN) in crop yield estimation where one of the type of models being used 

was feed-forward back propagation neural network. The set parameters that were taken into 

consideration include pH, Nitrogen, Temperature, and Rainfall to make a perfect prediction. 

Some of the methods needed one or multiple variables or described complicated techniques, 

relying on well-structured data primarily from technologically developed nations. Shakoor 

et al. (2017) for improving the decision-making regarding farmers’ crops in Bangladesh 

utilized supervised machine learning approaches to predict agricultural production outputs. 

The study availed itself to tackling the problem, which normally emanates from farmers 

employing past experiences in arriving at decisions for growing crops that are less profitable. 

Such an informative approach of the research pursued the objective of making agriculture 

business more efficient and profitable through the provision of intelligent information 

prediction analysis. The study focused on six major crops: Aus rice, Aman rice, Boro rice, 

potato, jute and wheat. The researchers used the information gathered from the Yearbook of 

Agricultural Statistics and Bangladesh Agricultural Research Council Information System to 

take Decision Tree Learning (ID3) and K-Nearest Neighbors Regression then proposed more 

economical crop for the concerned sector. Priyadarshi et al., 2019 analyzed that number of 

studies have shown that algorithms like Support Vector Regression and Long Short-Term 

Memory networks yielded better results than the other possible models. They found that 

their approach, LSTM and SVR, led to enhancement on the revenues as well increased 

efficiency in the reduction of the forecast errors. Although the research applies to all fruits 

and vegetables, it indicates that easy-to-use systems can be developed to meet the daily 

demand of the fresh produce, hence the low perishable products and inventory. Condran et 

al. (2022) provided a comprehensive review on the use of machine learning in agriculture, 

that also encompasses the review of experimental scenarios for benchmarking of the model 
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performance. Speaking of the research limitations, they pointed out the future research 

avenue in the area of Internet of Things (IoT) application in agriculture, which looks 

promising for improving the agricultural practices. Specifically, the paper by Moon et al. 

(2023) synthesizes the performance of different machine learning approaches from the 

perspective of wheat and rice production in Bangladesh. Some of the methods used in the 

study included K-nearest Neighbor, Random Forest, Ridge Regression, Support Vector 

Regression, Naïve Bayes, and CatBoost. The authors recommended that subsequent studies 

should increase learnable datasets which contain other data from other sources like 

characteristics of the environment and farming areas. Similarly, Kurek et al. (2023) 

developed three models for agricultural yield estimation: These are the hybrid, satellite, and 

non-satellite ones. That is proved by the fact that the identified SVM-based hybrid model 

which gives the best result has the value of 5. Hence, the sample model, producing 

approximately 85% Mean Absolute Percentage Error (MAPE), possessed the lowest error 

rate and proved to yield the best results compared to the satellite as well as the non-satellite 

models. The study pointed out the possibility of improvement of yield estimates by 

agricultural machine learning. 

The studies mentioned above were based on well managed databases. Bangladesh 

experiences numerous problems in this area because of insufficient and ineffective data 

management methods. Hence, the number of predictors for detailed predictions is kept to a 

minimal. Therefore, a machine learning based prediction model inclusive of algorithms is 

deployed in this study with the scarce predictor information coming through different 

sources and within the purview of Bangladesh’s agricultural data spectrum. 

 

 

3. Methodology 

The framework proposed for multivariate energy forecasting in Bangladesh is illustrated in 

Figure 1. The study comprises several steps: (1) data collection; (2) data processing, 

involving preprocessing to ensure data quality and feature engineering for meaningful 
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insights; (3) partitioning the dataset; (4) utilizing the training set for model training; (5) 

assessing models on the test set; and (6) selecting the best model based on performance 

metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Framework for Multivariate Rice Supply Chain Optimization in Bangladesh 
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3.1	Data	collection	and	analysis	

Historical public data are collected from the Department of Agricultural Extension published 

by Bangladesh Bureau of Statistics. Yearly district wise data as exhibited in Table 1 are 

recorded as a Microsoft Excel �ile from 2018 to 2023. 

 

Table 1: Accumulated data 

Feature No. Data Collected Data Type Source 

1 Year int64  

 

 

 

Bangladesh 

Bureau of 

Statistics 

(BBS) 

2 District object 

3 Production Area (Hectares) �loat64 

4 Yield Rate (M.Ton) 

(Target Variable 1) 

�loat64 

5 Production (M.Ton) 

(Target Variable 2) 

int64 

6 District Area (Hectare) �loat64 

7 Average of Minimum Temperature (DC) �loat64 

8 Average of Maximum Temperature (DC) �loat64 

 

Figure (2 – 8) depicts the features distribution. The frequency of values that fall within 

speci�ic ranges for a particular feature is represented by each histogram. 
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Figure 2: Distribution of Year 

 

 

 

 

 

 

Figure 3: Distribution of Production Area (Hectares) 

 

 

 

 

 

 

 

Figure 4: Distribution of Yield Rate (M. Ton) 
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Figure 5: Distribution of Production Area (Hectares) 

 

 

 

 

 

 

Figure 6: Distribution of District Area (Hectare) 

 

 

 

 

 

 

Figure 7: Distribution of Average of Minimum Temperature (DC) 
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Figure 8: Distribution of Average of Maximum Temperature (DC) 

 

Figure 9 is a graphical representation of the correlation matrix which helps to visualize 

correlation coef�icients between each pair of features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Correlation Heatmap. 

 

Figure (10 – 11) present line plots depicting trends in Yield Rate (M.Ton) and Production 

(M.Ton) across the years 2018 to 2023. Figure 10 shows the yield rate (in metric tons) for 

various years from 2018 to 2023, with a general increasing trend and notable variability each 
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year. Figure 11 shows the production (in metric tons) for various years from 2018 to 2023, 

displaying high variability each year with a noticeable downward trend over the years. 

 

 

 

 

 

 

 

 

 

 

Figure 10: Year vs. Yield Rate (Metric Tons) 
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Figure 11: Year vs. Production (Metric Tons) 

 

The scatter plot in Figure 12 illustrates the relationship between Production area (Hectares) 

and Production (M.Ton) from 2018 to 2023. This scatter plot shows the relationship between 

production area (in hectares) and production (in metric tons), with a positive correlation 

indicated by the upward-sloping trend line and a con�idence interval shaded around it. 

 

 

 

 

 

 

 

 

 

 

Figure 12: Production Area vs. Production 

 

3.2	Data	processing	

3.2.1	Managing	missing	data	
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Given the time span, missing values are present within the dataset. Ensuring the quality and 

completeness of the experimental data is essential. Missing values are �illed in using last 

observation carried forward (LOCF) or forward �ill method, as shown in Equation (1):  

�� = ���    when �� is not missing
����    when �� is missing

                                                                                                                                    (1) 

Let �� represents the value at time m. When �	 is missing, it is substituted by ����, the value 

from the preceding time step. LOCF propagates the last valid observation forward to �ill the 

missing values along each column (Hadeed et al., 2020).  

3.2.2	Data	splitting	and	scaling	

It is often common to split data 80:20 to have sets for use in training and testing where 80% 

of the data is used for training purposes while the rest of 20 % is used in testing. However, to 

maintain the chronological sequence, the ‘shuf�le’ parameter is set to ‘True.’ The 

‘random_state’ is also set to 42 to guarantee the reproducible nature of subsequent runs. 

The features are normalized using ‘StandardScaler’ from ‘scikit-learn’ library, as 

demonstrated mathematically in Equation (2):  


 = ���
                                                                                                                                                                         (2) 

where, transformed value of the feature is represented by 
, the original value by �, the 

mean by �, and the standard deviation by �. Both the training and testing sets of features are 

scaled to maintain consistency between their scales. Similarly, the target variables are scaled 

independently to prevent any potential data leakage during model training. 

3.3	Machine	learning	(ML)	models	

The considered ML models include Random Forest (RF), Gradient Boosting (GB), Adaptive 

Boosting (AdaBoost), Light Gradient Boosting Machine (LightGBM), Category Boosting 

(CatBoost) and Extreme Gradient Boosting (XGBoost) to which benchmarking is performed 

in this research. All the hyperparameters of each model are carefully tuned by pre-processing 

by Grid Search with Cross-Validation (GridSearchCV) and Randomized Search with Cross 
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Validation (RandomizedSearchCV). These techniques are applied to select the right 

hyperparameters for a model while using cross validation to boost the reliability of the 

process. Concerning the training and validation, the employed scheme is the ‘k-fold cross-

validation,’ where the model is trained k times, and the data set is divided into k subsets: one 

subset is used for validation, while the rest is trained for each iteration of the procedure. An 

accurate selected statistic is used to evaluate the performance, for example, R2 or MSE that 

are calculated on each of the k splits. The best hyperparameters are achieved from the 

combination that gives an average result from all the folds of the dataset used. 

3.3.1	Random	Forest	(RF)	

Random Forest (RF) method is an averaging algorithm aimed at utilizing many randomized 

decision trees to solve speci�ic tasks in the �ield of data analysis. Both are techniques 

belonging to the perturb-and-combine family suitable for trees. (Plaia et al., 2021). In RF each 

tree is developed by starting with a sample and then making use of substitution from the 

training data (Bernard et al., 2012). The best split is accomplished by thoroughly searching 

for the best value of input features or a random subset of size max_features. Two sources of 

randomness are utilized to diminish the variance of a forest estimator, as individual decision 

trees frequently over�it because of high variance. Incorporated randomness in forests lead to 

independent prediction errors, these can be updated through averaging of predictions. RFs 

connect to different trees, occasionally with a slight increase in bias level, inducing 

substantial variance decrease and a better model. This model gets an (�) input vector, 

comprised of the values of various evidential features assessed for a given training region 

and constructs � number of regression trees and average the outcomes. The RF regression 

predictor is 

 ����� (�) = �
� ∑  ���� �(�)                                                                                                                                                             (3) 

after � such trees {�(�)}�� are developed. 

3.3.2	Adaptive	Boosting	(AdaBoost)	
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This famous boosting algorithm was presented in 1995 by Freund and Schapire (Schwenk & 

Bengio, 2000). AdaBoost employs a series of weak learners to predict data, and these are 

then combined by adding weights to the majority vote to result in the �inal forecast (Ding et 

al., 2022). The data modi�ications at each alleged boosting iteration comprises of applying 

weights  �,  !, …,  � to each of the training samples. At �irst, those weights are all set to 

 " = 1/�, with the goal that the initial step essentially trains a weak learner on the original 

data. Each time it undergoes the same learning algorithm on reweighted data where weights 

of examples predicted correctly are reduced and weights of examples predicted incorrectly 

are boosted. As iterations progress, dif�icult-to-predict examples acquire more impact, 

constraining weak learners to focus on missed examples in the sequence. This process 

guarantees ef�icient learning and accurate predictions. 

3.3.3	Gradient	Boosting	(GB)	

Gradient Boosted Regression Trees (GBRT) regressors are additive techniques that predict 

%^" for a given input �"   in the following form: 

%^" = '�(�") = ∑ ⬚�	�� ℎ	(�")                                                                                                                                             (4) 

where the ℎ	 are estimators, with regards to boosting are called	weak	learners.	Gradient Tree 

Boosting uses �ixed size decision tree regressors as weak learners. The constant M 

corresponds to the n_estimators parameter (Yang et al., 2022). A GBRT is built in a greedy 

fashion similar to other boosting algorithms: 

'	(�) = '	��(�) + ℎ	(�),                                                                                                                                                    (5) 

where to minimize a sum of losses ,	, the newly added tree ℎ	 is �itted, given the previous 

ensemble '	��: 

ℎ	 = arg 0123 ,	 = arg 0123 ∑ ⬚�"�� 4(%", '	��(�") + ℎ(�")),                                                                                            
(6) 

where 4(%", '(�")) is established by the loss parameter. The initial model '5 is chosen as the 

constant that minimizes the loss by default: for a least-squares loss, this is the empirical mean 
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of the target values, and can be speci�ied via the init argument. The value of 4 can be 

approximated using a �irst-order Taylor approximation as follows: 

4(%", '	��(�") + ℎ	(�")) ≈ 4(%", '	��(�")) + ℎ	(�")[89(:;,<(=;))
8<(=;) ]<�<?@A .                                                                               

(7) 

The quantity [89(:;,<(=;))
8<(=;) ]<�<?@A  is the loss’s derivative in relation to the second parameter, 

assessed at '	��(�) and easily computed for '	��(�") in a closed form as the loss is 

differentiable, and is denoted by C". Removal of the constant terms: 

ℎ	 ≈ arg 0123 ∑ ⬚�"�� ℎ(�")C"                                                                                                                                               (8) 

If ℎ(�") is �itted to predict a value that is proportional to the negative gradient −C", this is 

minimized. The estimator ℎ	 is therefore 7itted and updated at each iteration to predict 

the negative gradients of the samples, resulting in a gradient descent in a functional space. 

3.3.4	Light	Gradient	Boosting	Machine	(LightGBM)		

LightGBM is a GBDT algorithm used in ordering, regression, and classi�ication problems, 

available features and it corresponds for exclusive feature bundling and gain-based one-side 

sampling techniques (Hajihosseinlou et al., 2023). Supervised training set is given: 
 =
{(�", %")}"��� , Intention of the method is to obtain an estimation ��(�) to a speci�ic function 

�∗(�) that limits the anticipated value of a speci�ic loss function ,F%, �(�)G as follows: 

�� = arg 012�  H:,I,F%, �(�)G                                                                                                                                                      (9) 

To approximate the �inal model, LightGBM technique combines several T regression trees 

∑  JK�� �K(
),  that is: 

�J(
) = ∑  JK�� �K(
)                                                                                                                                                                     (10) 

Regression trees are be expressed as  L(=), M ∈ {1,2, . . . , P}, where P signi�ies the quantity of 

leaves, M represents the decision rules of the tree and w is a vector that indicates the sample 
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weight of leaf nodes. Subsequently, the method can be trained in an additive form at step Q as 

follows: 

ΓK = ∑  �"�� ,(%", 'K��(�") + �K(�"))                                                                                                                                         (11) 

Objective function is quickly approximated with Newton's strategy. The formulation can be 

transformed as follows subsequent to eliminating the constant term in (iii) for 

straightforwardness: 

ΓK ≅ ∑  �"�� TC"�K(�") + �
! ℎ"�K!(�")U                                                                                                                                             

(12) where C" and ℎ"  denote the �irst- and second-order gradient statistics of the loss 

function. Let VW  denote the sample set of leaf X, and (iv) could be transformed as follows: 

ΓK = ∑  W
W�� T(∑  "∈YZ C") W + �

! (∑  "∈YZ ℎ" + [) W!)U                                                                                                                   

(13) 

Optimal leaf weight scores of each leaf node  W∗ and the extreme value of Γ� could be solved 

for a speci�ic tree structure M(�) as: 

 W∗ = − ∑  ;∈\Z ];
∑  ;∈\Z 3;^_                                                                                                                                                                                               

(14) ΓJ∗ = − �
! ∑  `

W��
T∑  ;∈\Z ];Ua

∑  ;∈\Z 3;^_                                                                                               

(15) where ΓJ∗ can be seen as the scoring function that measures the nature of the tree 

structure M. Objective function after adding the split is: 

b = �
! ((∑  ;∈\c ];)a

∑  ;∈\c 3;^_ + (∑  ;∈\d ];)a
∑  ;∈\d 3;^_ − (∑  ;∈\ ];)a

∑  ;∈\ 3;^_)                                                                                                                               

(16) where Ve and Vf are the sample sets of the right and left branches, individually. 

3.3.5	Category	Boosting	(CatBoost)	

Catboost model uses decision trees as the base learner in regression and each tree re�lects 

output value and the feature space division used in splitting as well as the splitting criteria/ 

decision rules used for tree splitting (Saber et al., 2021). Criteria of splitting individuals look 
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similar to a pair g =  (M, 0) having a feature indicator M =  1, 2, . . . . . , 2, and threshold value 

0 ∈  hWhen implementing the splitting criteria/decision rule a given set of feature vectors 

T can be partitioned into two disjoint mathematical subset of 
i and 
j , in order that for 

every � =  (��, �!, �k, … … . . , ��)  ∈ 
,  

�m �
j     1��L ≤ 0

i    1��L > 0                                                                                                                                                                   (17) 

Subsequent to carrying out splitting criteria/decision rule to p disjoint sets 


�, 
!, … … … . , 
q ∈  h�, 2p disjoint sets 
�j , 
�i , 
!j , 
!i … … … 
qj , 
qi . For a predetermined 

collection of sets of � = {
�, 
!, … … … . , 
q ∈  h�} and the target variable r ∶  h� →  h, the 

splitting criteria/decision rule can be given as �uC012v{b(g, r, �)}, where � functions to 

estimate the optimality of the decision rule/splitting criteria g and the assortment � with 

respect to the target variable r. For an negligent decision tree, b can be characterized as: 

b(g, r, �) = �
∑  wxyA |Ix| [∑  q{�� |
{j|��u{r(
{j)} + |
{i|��u{r(
{j)}]                                                                                      

(18) 

where r (
{ ) is the target variable score as for the sample 
{ . 

 

3.3.6	Extreme	Gradient	Boosting	(XGBoost)	

XGBoost, which stands for” Extreme Gradient Boosting,” is an advanced machine learning 

algorithm that has gained widespread recognition for its efficiency and performance in 

handling large datasets (Kiangala & Wang, 2021). Developed by Tianqi Chen and Carlos 

Guestrin, XGBoost is designed to optimize speed and accuracy through its scalable and 

distributed computing capabilities (Drahokoupil, 2022). The primary goal of XGBoost is to 

minimize an objective function that balances model accuracy and complexity. The objective 

function |}X(~) is a combination of the training loss ,(~) and a regularization term �(~): 

|}X(~) = ,(~) + �(~)                                                                                                                                                                   

(19) 
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Where ,(~) measures how well the model fits the training data, and �(~) penalizes the 

complexity of the model to prevent overfitting. The training loss , can be defined for 2 

training examples as follows: 

, = ∑ 4�"�� (%", %�")                                                                                                                                                                           (20) 

For regression problems, the squared loss is typically used: 

4(%", %�") = (%" − %�")!                                                                                                                                                                   (21) 

Where %" is the actual value and %�" is the predicted value. When a new tree is included in the 

model, the objective at iteration t is changed as follows: 

|}X(K) = ∑ 4�"�� T%" , %�"
(K)U + ∑ �KW�� F�WG                                                                                                                                

(22) 

This can be expanded using the predictions from the previous iteration Q − 1: 

|}X(K) = ∑ 4�"�� T%" , %�"
(K��) + �K(�")U + �(�K) + ��2�Q�2Q                                                                                                     

(23) 

To simplify the computation, XGBoost employs a second-order Taylor ex- pansion of the loss 

function, discarding constant terms: 

|}X(K) ≈ ∑ �C"�K(�") + �
! ℎ"�K!(�")��"�� + �(�K)                                                                                                                        

(24) 

Where C" = �9T:�,�A
(�@A)U

���
(�@A)  is the first-order partial derivative, and ℎ" = �a9T:�,�A

(�@A)U
���

(�@A)  is the 

second-order partial derivative. The regularization term �(�) helps to 

control the complexity of the trees and is defined as: 

�(�) = �� + �
! [ ∑  W!JW��                                                                                                                                                        (25) 
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Where � indicates the number of the leaf nodes, � stands for the penalty coefficient for the 

number of �, [ is the regularization parameter for the leaf weights, and  W  is the weight of 

leaf X. Rewriting the objective function to include the complexity term, we get: 

|}X(K) = ∑ �C" L(=;) + �
! ℎ" L(=;)! ��"�� + �� + �

! [ ∑  W!JW��                                                                                                      

(26) 

The gain from splitting a leaf node, which measures the improvement brought by the split, is 

given by: 

b�12 = �
! � �ca

�c^_ + �da
�d^_ − (�c^�d)a

�c^�d^_� − �                                                                                                                                 

(27) 

Where be and bf are the summed gradients for the left and right nodes, respectively, and �e 

and �f are the summed Hessians (second-order gradients) for the left and right nodes, 

respectively.  

 

 

 

3.4	Evaluation	metrics	for	ML	models 

Five metrics have been utilized for comparison in order to evaluate the ef�icacy of the 

suggested models. MAE, MSE, MAPE, median absolute error (MeAE), and coef�icient of 

determination (R2) indices are utilized to quantify the differences between the forecasted 

and actual values. The following are the calculation formulas over 2sample samples: 

MAE (%, %̂) = �
�sample 

∑  �sample ��
K�5 |%K − %̂K|                                                                                                                              

(28) 
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MSE (%, %̂) = �
�sample 

∑  �sample ��
K�5   (%K − %̂K)!                                                                                                                              

(29) 

MAPE = �
�������

∑ �:��:��
:�

��������
K�� × 100                                                                                                                                 

(30) 

MeAE (%, %̂) = median (|%� − %̂�|, … , |%� − %̂�|)                                                                                                                  

(31) 

£!(%, %�) = 1 − ∑  ¤sample @A
�y¥ (:��:��)a

∑  ¤sample @A
�y¥ (:��:)a

 where, %¦ = �
�sample 

∑  �sample ��
K�5 %K

                                                                                                                                             (32) 

Here, %K is the true value and %̂K is the predicted value corresponding to the Q-th sample. 

	

4. Results, comparative analysis, and discussion 

Forecast accuracy indices for the suggested ML models are presented in Table 2. 

Table 2: Indices of ML Models 

Model MAE MSE MAPE (%) MeAE R2 

RF 0.0588 0.0096 5.133 0.0258 0.9850 

AdaBoost 0.1293 0.0289 31.863 0.0957 0.9608 

GB 0.0376 0.0048 6.375 0.0161 0.9943 

LightGBM 0.0886 0.0366 15.692 0.0394 0.9523 

CatBoost 0.0444 0.0052 4.341 0.0278 0.9917 

XGBoost 0.0537 0.0071 4.899 0.0329 0.9892 

 

4.1	MAE	score	
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Figure 13 illustrates the comparison of MAE scores among the models. GB achieves the 

lowest MAE of 0.0376, demonstrating superior performance in minimizing absolute errors. 

Catboost follows with an MAE of 0.0444, and XGBoost achieves an MAE of 0.0537. RF records 

an MAE of 0.0588. LightGBM and AdaBoost exhibit the highest MAE values of 0.0886 and 

0.1293 respectively. 

 

 

 

 

 

 

 

 

 

	

Figure 13: Comparison of Mean Absolute Error (MAE)	

	

4.2	MSE	score	

Figure 14 illustrates the comparison of MSE scores among the proposed models. GB achieves 

the lowest MSE of 0.0048, followed by CatBoost with an MSE of 0.0052 and XGBoost with an 

MSE of 0.0071. RF records an MSE of 0.0096. AdaBoost shows an MSE of 0.0289, indicating 

higher sensitivity to larger errors. Respectively, while LightGBM has the highest MSE at 

0.0366. 
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Figure 14: Comparison of Mean Squared Error (MSE) 

4.3	MAPE	score	

Figure 15 illustrates the comparison of MAPE scores among the proposed models. The 

CatBoost model achieves the lowest MAPE of 43.41%, followed by XGBoost with an MAPE of 

48.99% and RF with an MAPE of 51.33%. GB records an MAPE of 63.75%. LightGBM shows 

an MAPE of 156.92%, indicating higher sensitivity to larger errors. Respectively, while 

AdaBoost has the highest MAPE at 316.63%. 
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Figure 15: Comparison of Mean Absolute Percentage Error (MAPE) 

4.4	MeAE	score	

Figure 16 illustrates the comparison of MeAE scores among the proposed models. GB 

achieves the lowest MeAE of 0.0161, followed by RF with an MeAE of 0.0258 and CatBoost 

with an MeAE of 0.0278. XGBoost records an MeAE of 0.0329. LightGBM shows an MeAE of 

0.0394, indicating higher sensitivity to larger errors. Respectively, while AdaBoost has the 

highest MeAE at 0.0957. 

 

 

 

 

 

 

 

 

	

Figure 17: Comparison of Median Absolute Error (MeAE) 
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4.5	R2	score	

Figure 17 illustrates the comparison of R2 scores among the proposed models. GB has the 

highest R² score of 0.9943, indicating excellent explanatory power. CatBoost follows with an 

R² of 0.9917, and XGBoost records an R² of 0.9892. RF achieves an R² of 0.9850. Respectively, 

AdaBoost shows an R² at 0.9523 and LightGBM has the lowest R² at 0.9608. 

 

 

 

 

 

 

 

 

 

 

Figure 18: Comparison of R-squared (R2) Score 

Upon evaluating the models across �ive performance metrics, it is evident that GB 

outperforms all other models utilized in this study, consistently demonstrating superior 

performance across all evaluation metrics. CatBoost and XGBoost also exhibit strong 

performance.  

 

4.6	Signi�icance	of	the	�indings	
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Integrating advanced technology in Bangladesh's agricultural sector, speci�ically in 

optimizing the rice supply chain, holds signi�icant importance (Jamal et al., 2023). Therefore, 

utilizing state-of-art machine learning techniques as well as techniques related to ensemble 

learning, this study targets to improve the accuracy of rice yield and production that plays 

an essential role in ef�icient utilization of resources and overall planning and formulation of 

agricultural and development policies. Since agriculture, especially rice production, forms 

the basis of Bangladesh’s economic, this proposal can enhance the farmers’ pro�it status, rice 

price, and supply, which can be good news to both buyers and sellers of rice (Mamun et al., 

2021). It also manages different supply chain issues like �luctuating weather patterns, the 

unavailability of advanced equipment and agricultural technology, and inadequate supply 

logistics using a more progressive ensemble learning method to build a more ef�icient supply 

chain system (Kumar & Agrawal, 2023). In this study, GB is found to perform best in the 

prediction of the rice yield and production as seen in the assessments of the accuracy of the 

various models and their performances. By employing ensemble learning, this model is very 

effective in solving the numerous factors that in�luence agricultural productivity since it 

amalgamates the predictions from multiple weak learners known to develop a more robust 

model. From this model, it is possible to come up with a consolidated rice yield and 

production forecast over a given period depending on the data on crop yield per hectare, 

average temperatures, production area, and general information for a speci�ic region. Such 

forecasts can be put into application in order to produce sound decisions, ef�iciently utilize 

resources, and thus enable farmers to adopt suitable agricultural policies, therefore 

enhancing production and returns. Furthermore, the study relates to the production of other 

research works in the �ield of supply chain enhancement and predictive modeling and 

propels a similar approach in other agricultural segments and other worlds. In addition to 

these economic impacts, socio-economic impacts are also immense as increased ef�iciency 

and productivity in agriculture positively affects food security, poverty diminishing, and 

welfare improvement of Bangladeshi rural people (Rahman & Anik, 2020). Therefore, this 

study proves the technology can be a powerful tool in agriculture, and provides the solution 

to some real-life issues, leading to the development of agriculture in Bangladesh. 
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5. Conclusion 

This study comprehensively investigates the potential of ensemble learning techniques to 

optimize the rice supply chain in Bangladesh. By leveraging historical data and employing 

advanced machine learning algorithms, the research demonstrates signi�icant improvements 

in predictive accuracy and operational ef�iciency. Speci�ically, the models—RF, AdaBoost, GB, 

LightGBM, CatBoost, and XGBoost—have been meticulously analyzed to provide insights into 

their performance in predicting rice yield and production. The �indings indicate that 

ensemble learning methods, particularly GB, CatBoost, and XGBoost, exhibit superior 

performance across multiple evaluation metrics. Among these, Gradient Boosting stands out 

as the best-performing model, achieving an MAE of 0.0376, an MSE of 0.0048, a MAPE of 

0.6375, a MeAE of 0.0161, and an R² score of 0.9943. This model consistently outperforms 

others, showcasing its robustness in handling the complexities of agricultural data in 

Bangladesh. The study furthermore highlights the importance of accurate forecasting in 

enhancing agricultural planning and policymaking, which in turn can lead to better resource 

allocation and more effective agricultural strategies. The study also points out the areas of 

technological imperatives in helping to overcome the problems encountered in the 

agriculture industry in Bangladesh. If the rice supply chain management is enhanced, the 

farmers, distributors, and ultimately the consumers can gain tremendously through better 

decisions and decision-making tools that maximize the pro�it possible and, also regulate the 

prices of rice while at the same time ensuring a steady supply. All in all, this research not only 

enriches the context of supply chain optimization and future forecasting but also establishes 

a reference case for the use of machine learning methods in developing nations. Speaking 

about the contribution of modern approaches of predictive models’ integration into the 

agricultural �ield seen as having the potential to revolutionize conventional farming, promote 

sustained economic growth and guarantee food security in Bangladesh. 
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